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Abstract—The characterization of Geometric and Exponential 
distribution have a lot of application in Actuarial, Biological 
Sciences, Engineering problems, Queuing theory etc. The 
characterization of geometric and exponential distribution have been 
recently given by many authors based on Order Statistics, 
Independence of the random variables, characteristic functional 
equations etc. This paper is not enough to review all the 
characterizations of Geometric and Exponential distribution and I 
have reviewed some of the characterizations. 

1. INTRODUCTION 

The characterization of exponential and geometric 
distributions have a lot of applications in Actuarial, biological 
sciences, engineering problems, queuing theory etc. The 
exponential and geometric distributions are remarkably 
friendly. So everyone introducing a new concept to classify 
distribution inevitably  uses the exponential distribution as 
their concept .The characterization of the exponential and 
geometric have  been recently given by many authors based on 
Order Statistics, Independence of the Random Variables, 
Record Values, etc. A paper is inadequate to catalogue the 
enormous number of characterizations of both exponential and 
geometric distribution. All of them cannot be included in this 
paper. So, I have reviewed only some characterizations of 
exponential, and geometric distributions. 

2. REVIEW OF LITERATURE 

Desu [1971] showed that the exponential distribution is the 
only one with the property that for all k, k times the minimum 
of the random sample of size k from the distribution has the 
same distribution as a single observation from the distribution. 

Puri and Rubin [1970] proved that if X1 and X2 are 
independent copies of a random variable X with density f, then 

X and 21 X - X   have the same distribution if and only if f is 

exponential distribution. 

Arnold and  Ghosh [1976] showed  that if X2:2  - X1:2  given 
X2:2  - X1:2  > 0 and X1:1 has the same distribution  then the Xi ‘s 
are geometrically distributed. 

H.J.Rossberg [66] has reported that the condition that 


n

kj

Cj 

Xj  (with 


n

kj

Cj  = 0 and  Cj ‘s not all zero ) and 


hX (h ≤ k) 

are independent ensure that the distribution is exponential 

form. If further   x] X  - X P[ 1-kk 
= [1 – FX(x)]n-k+1  then 

the start of the distribution is at zero.     

Gordon B. Growford [1966] has shown that if X and Y are 
non – degenerate 

Independent random variables with X – Y and min(X, Y) are 
independent  then for some constant a, (X – a) and (Y – a) 
have exponential distribution function. 

A.P.Basu[1] shown that if X1 and X2 have the same absolutely 
continuous distribution function F(x) iff the random variables 
X1 and W = X2 – X1 are independently distributed. 

Ursula Gather [1998] obtained a characterization of the 
exponential distribution by properties of order statistics. 

El – Neweihi and Govindarajulu  [1978] showed  that if  X1:n 
is independent of 

Xk:n – X1:n = 0 for some k >1, then the X’s are geometric (or 
degenerate). 

Ashok K.Nanda [2010] obtained a characterization of 
distributions through failure rate and mean residual life 
function. 

3. CHARECTERIZATIONS OF GEOMETRIC AND 
EXPONENTIAL DISTRIBUTION BASED ON 
PROPERTIES OF ORDERS STATISTICS 

Some Characterizations of the geometric distribution are given 
by R.C. Srivastava (1974), Barry C.ARNOLD (1979) and Z. 
Govindarajulu (1980) among others.  Almost all these 
characterizations are on the results of the order statistics and 
the lack of memory property.  In this chapter, I would like to 
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review their works about the characterizations of Geometric 
distribution. And  also, I have reviewed  the characterizations 
of exponential distribution based on order statistics, which 
were given by M.S. Srivastava, M.Ashanullah and Sukhatme. 

3.1.1. Introduction 

In this note, we discuss two simple properties of the geometric 
distribution which was given by R.C.Srivastava and show that 
very weak forms of these properties are characterizing 
properties of the geometric distribution. Let X1, X2, ……Xn, n 
> 2 be n independent observations on a random variable X 
having a  geometric distribution with density. 

Pj= p (1-p) (j-α)/β, j= α,α+β,α+2β……    (3.1.1a) 

The parameters α and β are respectively location and scale 
parameters and the parameter p is the geometric parameter. 
Also the Y1 < Y2 <…. < Yn denote the corresponding order 

statistics .Write Z =  


n

j 2

(Yj-Y1). It is well known that Y1 

and Z are independent. 

For formulating the second property, let us consider two 
independent random variables X1 and X2 having geometric 
distributions with the same scale and location parameters α 
and β but different geometric parameters p1 and p2.It is known 
that 

U = min (X1, X2) and V=X2-X1 are independently distributed. 

These properties enable us to obtain two characterizations of 
the geometric distribution as given in the following theorems.  
Throughout this article, we take α = 0, β = 1.  However, it is 
clear that the conclusions are true for all admissible values of 
α and β. 

Theorem 1 

Let X1, X2, ……Xn be iid r.v’s with distribution function F(x) 
with positive mass at      α, α +β, α +2β……and Let Y1 < Y2 
<…. < Yn  be the orders statistics.  Then. 

P(Y1= α+jβ, Z=0) = P(Y1= α +jβ).P(Z=0). 

for all j = 0,1,2.... (3.1.1b) 

iff, F(x) is geometric distribution with density given by 
(3.1.1a). 

Proof: 

From (3.1.1b), we have 

P (Y1 = j, Z = 0) = P(Y1=j) P(Z=0) 

= 


n

i 1

P(Xi=j) 

=pj
n        (3.1.1c) 

and  P(Y1=j)  P(Z≠ 0)  = P(Y1=j, Z≠ 0) 

= 

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  (3.1.1d) 

Substituting the value of P(Y1=j) from (3.1.1c) into (3.1.1d), 
we have, 
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 = A. pj

n      (3.1.1e) 

Where  A = )0(

)0(




ZP

ZP
 

Equation (2.1.1e) can now be written as 













1

1

n

r

r
j Ab
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n
  (3.1.1f) 

Since (3.1.1f) is true for all values of j, we also have, 


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  (3.1..1g) 

Subtracting (3.1.1g) from (3.1.1f), we have, 
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(3.1.1h) 

Since the quantity inside the square bracket is not equal to 
zero. We have bj+1 = bj for all j. 

So we have  bj = b0 or 

0.
0

pp a

a

j
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= pj-1 (1-p0) 

By induction, pj = (1-p0)
j . p0. This completes the proof .An 

immediate consequence of theorem 1 is, 

Corollary 1:- 

Let S2 = ∑ (Xi- X )2. ThenP (Y1=j, S2 = 0) = P (Y1=j) P(S2=0)  
for j = 0,1,….. iff F(x) is a geometric distribution. 

Corollary 2: 

F(x) is a geometric distribution iff 

P (Y1= j, Yk-Y1 = 0, K = 2…n) = P (Y1=j). P(Yk-Y1=0, 
K=2…n) for all j. 

Theorem 2:- 

Let X1 and X2 be independent random variables possibly with 
different distributions having positive mass at α, α + β, α + 2 
β, ….. 

Then P(U= α + jβ, V = lβ)=  P(U = α +jβ) P (V = lβ)  for l = 
0,1 and all j  (3.1.1i) 

Proof:- 

Let P(X1=j) = pj and P(X2 = j) = qj, j = 0,1….. From (2.1.1i) 
we have, 

P(U=j) P(V=0)  =  P ( U=j, V=0) 

= P(X1=j) P(X2=j) 

= pj qj     (3.1.1j) 

And   P(U = j) P(V=l)= P (U=j) (V=1) 

= P (X1 =j) P (X2=j+1) 

= pj qj+1          (3.1.1k) 

Also, P(U = j) =  pj qj + pj 


 1jk

qk + qj 
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 1jk
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Substituting these values in (2.1.1j) and (2.1.1k), we have, 
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Dividing (3.1.1m) by (3.1.1c), we obtain, 
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It follows that (3.1.1n) that X2 has a geometric distribution. 

Substituting     0
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The equation is true for all values of  j  and also we have, 
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Subtracting (3.1.1p) from (3.1.1O), we have, 

101
10

2
0

1 )(  


 jjjjj pCpp
CC

C
pp  





























10

2
0

0
10

2
0

1 11
CC

C
pC

CC

C
p jj  
















1010

2
010

1 CCCC

CCC
pp jj

    

 (3.1.1q) 

It is clear from (3.1.1q) that X1 also has a geometric 
distribution. 

3.1.2. Introduction 

Here we discuss B.C. Arnold’s characterization of Geometric 
distribution based on order statistics. Let X1, X2,.....Xn be a set 
of positive integer valued random variable . We assume 0 < 
P(X i = 1 ) < 1 . Denote the order statistics of the sample by X 
1 : n,  X 2 : n .... X n : n  . Geometric characterization based on 
distribution properties of the order statistics are not common . 
Those available assume a sample size 2. In particular,  Arnold 
and Ghosh showed that if X 2: 2 – X 1: 2 given X 2: 2 – X 1: 2  > 0 
has the same distribution as X 1 : 1  then the X i ‘ s are 
geometrically distributed . They conjectured that this result 
could be extended to tread the case of arbitrary sample size n 
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≥ 2 as follows. If for some k (1 ≤ k ≤ n-1), X k+1:n – X k: n given 
X k+1:n – X k: n  > 0 has the same distribution as X 1:n-k then the 
Xi’s are  geometrically distributed. This conjecture is proved 
in the following section. 

THE CHARACTERIZATIONS 

Besides dealing with the geometric distribution, the two 
characterizations to be presented share another common 
feature. They are both consequences of a lemma recently 
proved by Shanbhag [1977]. 

Lemma 3.1.2:-  

Let {(vn.wn), n = 0,1,2.....}be a sequence of vectors with non – 
negative real components such that vn≠0 for some n≥ 1 and 
w1≠0. Then 

vn  = 


0n

 vn+m.wn, m = 0,1,2......... 

iff


0n

wn b
n = 1 and vn = v0.b

n,  n = 1,2,....for some 

b>0. 

Now suppose that X1,X2,.....Xn be iid  positive integer valued 
random variables with order statistics X 1 : n,  X 2 : n .... X n : n, for 
j = 1,2...... define  pj = P(Xi = j) and qj = P(Xi>j) and assume 
0<p1<1. 

Theorem  1:- 

The conditional distribution of X k+1:n – X k: n given X k+1:n – X 
k: n  > 0 is the same as the unconditional distribution of X 1:n –k 

for some pair  (k,n), (1≤ k <n), iff 

P(X1 = j) = p.(1-p)j-1,  j = 1,2...... for some p(0,1) 

Proof:- 

The if part is trivial. To verify the ‘only if ‘ part, observe that 
for j = 1,2...., we have, 

qj
n-k = P(X 1:n –k  >j) = P(X k+1:n – X k: n >j/ X k+1:n – X k: n  > 0) 

=   C. P(X k+1:n – X k: n >j) 

=   C.


1l

 P(X k:n= l, X k+1: n > l +j) 

Now one can write, 

{X k:n= l, X k+1: n > l +j} = 
k

m 1

Em, where Em corresponds to 

the event described by exactly m Xi’s  assume the value l, k – 
m of the Xi’s are less than l and  n-k of the Xi’s are greater 
than l+j. it follows that (using the convention q0 = 1) 
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Now let r0 = 0, vm = qm+1
 n-k, wm = Cr

m, m = 0,1,2...... The 
conditions of Shanbhag’s are satisfied, since 0<p1<1. It 
follows that, 

qj
n-k = α βj,   j = 1,2..... and consequently qj = α1/n-k.(β1/n-k)j. 

So that Xi’s are indeed geometric random variables. 

Theorem 2:-The random variable X 2:n – X 1: n  and the event 
[X1:n =1] are independent and 

P(Xi = 1), P(Xi = 2) and P(Xi > 2) are strictly positive, iff 

P(X1 = j) = p.(1-p)j-1,  j = 1,2...... for some p  (0,1) 

PROOF:- 

The if part is trivial. To show that the converse. Consider for j 
= 0,1,2.... 

P(X1:n =1, X 2:n – X 1: n> j) = P(X1:n =1, X 2:n > j+1) 

= r1qj+1
n-1 

Where r1 is as defined in the proof of the theorem 1 (with k = 
1). Next observe that for j =0,1.2..... 

P(X1:n =1) P(X 2:n – X 1: n> j) = C(n) 


1l

 r1qj+1
n-1 

Again rl  is as defined in the above theorem (with k = 1). From 
the assumption of independence, we conclude that, 

qj+1
n-1 = C

~


1l

rl ql-1+j 
n-1  , j = 1,2........ 

Now let vm = qm+1
n-1  and wm = rm+1, m = 0,1,2.... 

The conditions of Shanbhags lemma are satisfied since 
p1>0,p2>0 and p1+p2<1. It follows that,  qj

n-k = α βj,   j = 
1,2.......... and consequently,qj = α1/n-1.(β1/n-1)j., j = 1,2........ 

So that Xi’s are indeed geometric random variables. 

3.13. Introduction 

Here we discuss the characterization of geometric distribution 
based on the properties of order statistics, which was given by 
Z.Govindarajulu. Several contributions have been made to 
characterizing the geometric distribution based on order 
statistics. Recently  

El – Neweihi and Govindarajulu.Z [1979] has characterized 
the geometric distribution using (i) the independence of X1n 
and the event {Xkn = X1n} and (ii) the independence of X1n and 
the event {Xkn – X1n  B}, where B = {m} or B = {m,m+1,..}. 
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They also characterize IFR or DFR property in terms of the 
monotonicity in i of P{ Xkn – X1n/ X1n = ai}, where the 

Xin,(i = 1...n)denote order statistics in a random sample of size 
n anda1<a2<..... is the set of possible values of the underlying 
variable. It is of much interest to further generalize these 
results and Fergusons[1965,1967] results for independence. 

3.1.3.1 Independent and Identically Distributed 
Components 

Let X be a  non – negative discrete random variable having 
{1,2...} for its set of possible values. Let X1n ≤..........≤ Xnn 
denote the order statistics in a random sample of size n drawn 
from the discrete population.Also, Let G(i) = P(X≥i) and q(i) 
= G(i+1)/G(i), i =1,2.... 

Theorem 3.1.3.1 

For some arbitrarily fixed k (2 ≤ k ≤n) X1n and the event {Xkn 
- X1n ≥m} are independent for some m≥1 if and only if G(i) = 
q i-1, for i = 1,2...provided G(l) = ql-1, 

for l = 1,2....m+1. 

Proof:- 

Consider P(Xkn - X1n ≥m/ X1n =i) 

= P(Xkn ≥m+i, X1n =i)/ P( X1n =i) 

Where P(Xkn ≥m+i, X1n =i) = P(Smallest X = i and atleast (n-
k+1) X’s ≥ m+i) 
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jiq . If q(i) q, then the above 

probability is free of i. However, if the conditional probability 

is free of i, then setting i=1 and i=2 and equating two 
equations, we obtain, 
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Since all the terms in the preceding summation are non – 
negative, each has to be equal to zero and consequently 
q(m+1) = q. Now, induction will completes the proof. 

Corollary 3.1.3.1 

If m = 1, then by considering the complementary event. We 
infer that X1n and the event {Xkn - X1n ≥m} are independent if 
and only if G(l) = q l-1, for l = 1,2...provided G(2) = q. For the 
next result, we need the following lemma. 

Lemma 3.1.3.1 

Let X be a discrete random variable having (a1,a2...aN) for its 
set of possible values, where without loss of generality, we 
assume that a1< a2<.....<aN. Furthermore, set G(l) = P(X≥al). 
Then X is degenerate if and only if for some arbitrarily fixed k 
(2 ≤ k ≤n), P(Xkn = X1n) = 1. 

Proof 

If X is degenerate the result is trivially true. If X is non – 
degenerate, write 

P(Xkn = X1n)  = 


N

l 1

P(Xkn = X1n = al) 

= 


N

l 1

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
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 [G(l) – G(l+1)]r. Gn-r(l+1) 

And assume that there is positive probability mass on two 
points only, namely ai and aj. Then 

G(l) = 1 for l≤i, 0<G(i+1) = ......=G(j) <1, and G(l) = 0 for l>j. 
Hence, P(Xkn = X1n) = 1 implies that, 
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since G(i) = 1, 
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1  = 0 

Which implies that 1 – G(i+1) = 1 or G(i+1)  = 0. This is a 
contradiction. 
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Theorem 3.1.3.2:- 

Let {1,2,...N} denote the set of possible values for X where N 
may be finite or infinite. Then X1n and the event {Xkn - X1n 

≥m} are independent for some arbitrarily fixed k (2 ≤ k ≤n) if 
and only if either X is degenerate or G(l) = q l-1, for l = 
1,2...provided G(2) = q. 

Proof:- 

First, let us assume that N is finite. Then due to the hypothesis, 
we have, 

P(Xkn - X1n ≥1, X1n =i) = P(Xkn - X1n ≥1) P(X1n =i) 

LHS   = P(Xkn ≥1+i, X1n =i) = P(smallest X=i, atleast (n-k+1) 
X’s ≥ 1+i) 

=




1

1

k

s

P(exactly S X’s = i, (n-s) X’s≥ 1+i) 
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
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1

1

k

s )!()!(

)!(

sns
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[G(i) – G(i+1)]s. Gn-s(i+1) 

Hence we have, 
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Gn(i+1)]  for i=1,2. 

Let i = N and noting that G(l) = 0 for all l>N, we have, 

0 = P(Xkn - X1n ≥1) Gn(N) . Since G(N)≠0, P(Xkn - X1n ≥1) = 0. 
That is 

P(Xkn - X1n =0)=1 which implies that X is degenerate by 
lemma 3.1.3.1.Hence N is infinite and the proof is complete 
by setting m = 1 in theorem 3.1.3.1. 

Theorem 3.1.3.3:- 
For some arbitrarily fixed k (2 ≤ k ≤n), X1n and the event {Xkn 
- X1n= m} are independent for some m≥1 if and only if G(l) = 
q l-1, for l = 1,2......m+2. 

Proof:- 

Consider 

P(Xkn - X1n= m/ X1n= i) = [P(Xkn ≥m+i, X1n =i) – P(Xkn 
≥m+i+1, X1n =i)]/ P( X1n =i) 

Now using the proof of theorem 3.1.3.1, we have 
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From the hypothesis the right hand side expression is free of i, 
set i = 1 and 2 and equating both sides, we obtain, 
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Now since q(l) = q for l=1.....m+1. p1,m = qm-1,  p1,m+1 = qm, 
p2,m = qm-1, p2,m+1 = qm+1.q(m+2). 

Consequently, we have   
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Since each term is positive, it follows that q(m+2) = q. Now 
induction will completes the proof. 

Theorem 2.1.3.4:- 

For some arbitrarily fixed k (1 ≤ k ≤n-1), X1n and the event 

{Xk+1,n - Xk,n≥ m, Xk,n = X1n } are independent for some m≥1 if 
and only if G(l) = q l-1, for l = 1,2......provided q(l) = q (0<q<1) 
for l = 1,2..........m. 

Proof:- 

P(Xk+1,n - Xk,n≥ m, Xk,n = X1n / X1n = i) =  P(Xk+1,n ≥m+i, Xkn =  
X1n =i)/ P( X1n =i) 

= P(exactly (n-k) X’s ≥m+I and exactly k X’s =i)/ P( X1n =i) 

= 

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q(l) = q implies that the above quantity is free of i. If the above 
quantity is free of i, set i = 1 and 2and equating the quantities, 
we obtain, 

qm-1.q(m+1) = qm. i.e., q(m+1) = q. Now inductions complete 
the proof. 

THEOREM 2.1.3.5:- 

For some arbitrarily fixed k (1 ≤ k ≤n-1), X1n and the event 

{Xk+1,n - Xk,n= m, Xk,n = X1n } are independent for some m≥0 if 
and only if G(l) = q l-1, for l = 1,2......provided 

q(l) = q (0<q<1) for l = 1,2..........m+1. 

PROOF:- 

WriteP(Xk+1,n= m+i, Xkn =i,  X1n =i)/ P( X1n =i) = 
)!(!

!

knk

n


[G(i) – G(i+1)]k[G(m+i) – G(m+i+1)]. 

Gn-k-1(m+i) [Gn(i) – Gn(i+1)]-1 
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
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q(l) = q implies that the above quantity is free of i. If the above 
quantity is free of i, set i = 1 and 2 and equating the quantities, 
we obtain, 

qm-1.q(m+2) = qm. i.e., q(m+2) = q. Now induction completes 
the proof. 

The following result gives another property enjoyed by the 
geometric distribution. 

Theorem 3.3.1.6:- 

If G(i) = qi-1 for i=1,2....then 

(i) X1nandtheevent{Xk+1,n - Xk,n≥ m, Xk,n≥m }aremutually  
independent for all k (1 ≤ k ≤n-1), and all m≥1 

(ii). X1n and the event {Xk+1,n - Xk,n= m} are mutually  
independent for all k (1 ≤ k ≤n-1), and all m≥0. 

Proof:- 

Consider 

P(Xk+1,n - Xk,n≥ m / X1n = i) = P(Xk+1,n ≥m+i, Xkn =  X1n =i) 

+ 


1s

 P(Xk+1,n ≥m+s+i, Xkn =s+i, X1n =i)]/P(X1n =i) 
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Now, one can easily see that if q(i) = q for i = 1,2  then the 
right hand side expression is free of i. Result (ii) follows upon 
noting that . 

P(Xk+1,n - Xk,n= m/ X1n= i) = [P(Xk+1,n ≥m+i /X1n =i) – P(Xk+1,n-  
Xk,n≥ m/, X1n =i)] and each quantity on right side is free of i. 

3.2. Characterization Of Exponential Distribution Based 
On Order Statistics:- 

3.2.1 .Introduction:- 

Here we discuss M.S.Srivastava’s characterization of the 
exponential distribution. The purpose of this note is to add one 
more existing set of theorems to characterize the exponential 
distribution whose probability density function is given by 

f(x) = (1/σ) exp(-(x –θ) /σ) , x >θ,  σ>0. (3.1.2a) 

A characterization of the exponential distribution:- 

The following theorem characterizes the exponential 
distribution. 

Theorem 3.2.1:- 

Let F be an absolutely continuous distribution function of the 
random variable X with F(θ) = 0, θ>0,and with probability 
density function f(x). Let X1<X2<......<Xn denote the order 
statistics of a random sample of size n from this distribution. 
Then, in order that Xm+1 – Xm and Xm for fixed m, 1≤ m<n be 
independent, it is necessary and sufficient that the random 
variable X has the exponential distribution. 

Proof:- 

Necessity:- 

Let  Xm  = U  and Xm+1  = V. Then the pdf of U is, 
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And the joint pdf of U and V is, 

)()())(1())((
1)1()!1(

! 11 vfufvFuF
mnm

n mnm  


 

Consequently the conditional pdf of V/U = u is, 
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 (2.2.1b) 

It is our desire to show that if V-U and U are independent, 
then X has the exponential distribution. Because of the 
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independence of V-U and U, E(V-U) = E(V-U/U=u) and is 
free of u. Thus, 

E(V-U)=E(V-U/U=u)= dvvf
uF

vF
uvmn

u
mn

mn

)(
))(1(

))(1(
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 (3.2.1c) 

And is free of u. Differentiating the above equation with 
respect to u, we have with probability one, 
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Since, E(V-U) is independent of  v and the first expression on 
the right is constant, we have, 


 )(1

)(

uF

uf
   (3.2.1d) 

Where β is a constant different from zero. Consequently, 

dueuF  )(1  (3.2.1e) 

and   
dueuf  )(  

Where d is a constant of integration. But since f is a 
probability density over the range θ to ∞. 

It follows that d = βθ and β>0,hence, 

)()(   xeuf  x>θ,β>0    (3.2.1f) 

Therefore X has the exponential distribution. 

Sufficiency:- 
Now, suppose that the distribution of X is given by (3.2.1f). 
Then the joint density of U and V is, 
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Consequently the joint density of Z=V-U and W=U is, 
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, z>0, w>θ. 
 
Hence Z and W are independent. Then the density of Z is 
given by, 

 
zmnemn .).(.)(     , z >0 

 
And the density of W is given by, 
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3.2.2 Introduction:- 

Here we discuss a characteristic property of the exponential 
distribution,  which was given by M.Ashanullah. Let X be a 
random variable whose probability density function is, 

otherwise

x xe
xf



 




0

0,
)(

/1 




              

(3.2.2a) 

 

Suppose X1,X2....Xn is a random sample of size n from a 
population with density f and let X1,n< X2,n<......< Xn,n be the 
associated order statistics. In this paper we will give a 
characterization of the exponential distribution that requires X 
and (n – i) (Xi+1,n – Xi,n) to be identically distributed for some i 
and n, 1≤ i < n. 

Notation And Result:- 

Let F be the distribution function of non – negative random 
variable and 

let F (x) = 1-F(x), for x≥ 0.we will call F is ‘New Better than 
Used’ (NBU) if 

)( yxF   ≤ )().( yFxF ,   x,y ≥ 0,  and F is ‘New Worse 

than Used’  if 

)( yxF   ≥ )().( yFxF ,   x,y ≥ 0. We will say that F 

belongs to the class C, if F is either NBU or NWU. 

Trheorem 3.2.2:- 

Let X be a non – negative random variable having an 
absolutely continuous ( with respect to lebesque measure) 
distribution function F that is strictly increasing on (0,∞). 
Then the following properties are equivalent. 

(a) X has an exponential distribution with density as given in 
(2.2.2a) 

(b) For some i and n 1≤ i < n,  the statistics (n – i) (Xi+1,n – 
Xi,n) and X are identically distributed and F belongs to 
class C. 

Proof:- 

It is well known that (a) (b) ( see galambos (1975). So we 
prove only that (a) (b). 

From the density of Yi = (Xi+1,n – Xi,n), it follows that Z = (n-i) 
Yi  has the density, 
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hypothesis fz = f and writing 
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Integrating equation (3.2.2c) with respect to z from 0 to z1, 
and interchanging the order of integration (which is permitted 
here ), we get, 
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



 



 

Now if F is NBU, then for any integer k>0,
kxFkxF /1))(()/(  , so  G(0,Z1) ≥ 0.Thus if  (2.2.2c) 

holds, it must be G(0,Z1)  0,similarly if F is NWU, then 

G(0,Z1) ≤ 0, and hence for (3.2.2d), to be true G(0,Z1)  
0.writing  G(0,Z1) in terms of F,  we get, 

1-F(Z1) = (1-F(Z1(n-i))) n-i,  for all Z1  (3.2.2e) 

Substituting F (x) = 1-F(x) and n-i = k, we get from ((3.2.2e), 

 kzFkzF /1))(()/(  ,  

for all Z1>0 and some integers k>0.   (3.2.2f) 

The solution of (2.2.2f) is for k>1, 

11)(1)( 11
zezFzF      

 for some λ1>0 and all z>0  (2.2.2g) 

If  k=1, then  

)()())(((),( 1
1

11 ZFuFZuFZuG    and (3.2.2d) 

gives, 

  0.)()(.(()(.)(.))((
0

1
1

1
2 


 duzFuFzuFuFufuF n

 

for all z1 and with FC. 

This means )())().(( 1
1

1 zFuFzuF   . So again we get, 

11)(1)( 11
zezFzF    for some λ1>0 and all z>0 

3.2.3. Introduction:- 

Here  we discuss the characterization of exponential 
distribution, which was given by Sukhatme(1937).Let X be a 
random variable whose probability density function is given 
for some θ>0, 

fθ(x) = θe-θx,   x >θ, θ>0. 

Suppose X1,X2....Xn is a random sample of size n from a 
population with density f and let X(1)<X(2)<........<X(n), be the 
associated order statistics. In this note, we will give a 
characterization of the exponential distribution that requires 
Dk= (n-k+1) {X(k) – X(k-1)} to be identically distributed with 
pdf f. The following theorem gives the characterization of the 
exponential distribution. 

Theorem:- 

Let X(1),X(2)........X(n), be order statistics based on a random 
sample from fθ(x) = θe-θx, x >θ, θ>0.. Define Dk= (n-k+1) {X(k) 
– X(k-1)} ,  where X(0)=0.Then   D1,D2....Dn are iid random 
variables with pdf, θe-θx, x >θ. 

Proof:- 

The joint pdf of X(1),X(2)........X(n )  is  





n

i

x
n

ienxxg
1

.
1 !).....(   0<x1<....<xn<∞ 

= n! θn 

n

ix

e 1


 0<x1<....<xn<∞ 

Define dk= (n-k+1) {x(k) – x(k-1)},   k=1,2.....n. then the Jacobin 
is, 



























j

i

x

d
J 1  = n!      J = (1/n!). 
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Consider, 



n

i
ni xxxx

1
21 ......  = 

).....(............)( 1122111121 xxxxxxxxxxx nnnn    

= n.x1+(n-1).(x2-x1)+.... ....+(xn-xn-1) 

Therefore 
 


n

i

n

i
i dix

1 1

.Then the joint pdf of D1..Dn is, 

h(d1,d2......dn)=n!.θn

n

ix

e 1


(1/n!) 0<d1<....<dn<∞ 

= 


 


n

i

d
n

k
k

e
1

1.


   0<d1<....<dn<∞ 

Therefore D1.....Dn are iid exponential with pdf f. 

Corollary:- 
(i). nX(1) follows exponential with parameter θ. 

(ii).The statistic 



n

i
i XX

2
)1()( )(  follows gamma 

distribution with (α, n-1). 

PROOF:- 

(i) nX(1)  = D1. From the above theorem, D1 has exponential 
distribution. 

(ii) Consider  



n

i
i XX

2
)1()( )(   = X(2) – X(1)+X(3)-

X(1)+........+X(n) –X(1)                                                           
 

= X(2) – X(1) + X(3)-X(2)  + X(2) - X(1)+........ .+ X(n) –X(n-1)+    X(n-1) 
+ X(n-2) + X(2) – X(1)   = (n-1) (X(2) – X(1)) + (n-2) (X(3)-
X(2))+...+ (X(n) –X(n-1)) 

(iii) We know that, nX(1)  = D1 and 



n

i
i XX

2
)1()( )(  = 

D2+D3+.....+Dn 

Since D1.....Dn are independent. Therefore 


n

i
iDD

2
1

.which implies that X(1) and 



n

i
i XX

2
)1()( )(  are 

independent. 

3.3. Characterizations By Record Values:- 

Let X1,X2,...Xn  be a sequence of iid random variable with 
continuous distribution function F. Define a sequence of 
record times U(n), n≥1 as follow: 

U(1) =1, U(n) = min {j : j>U(n-1), Xj >XU(n-1) }, n>1 

Let Xu(n)  be upper record values, n=1,2..... Let XU (n+1), XU (n+2) 

...... be the next observation that come after XU(n).It is not 
difficult to prove that   XU(n), XU (n+1), XU (n+2) ......  are mutually 
independent and XU(n) +k  has the same distribution F for any 
k=1,2.....Let us define the following random variable for a 
give n 

  n(i) =      1 if XU(n)+i <XU(n), i=1,2,.... 

                              0 if XU(n)+i ≥XU(n). 

 

As a consequence of theorem 3.1 we have the following. 

Theorem 3.1.1:- 

Let X be a non-negative random variable having continuous 
distribution function F satisfying inf{ x : F(x)>0 }=0,then the 
following statements are equivalent 

(a).X has an exponential distribution with density as given in 
(3.1.2)      
For some  n>1,E( (ξn(1)) = E ( n(1)) 

And F is either NBU or NWU 

PROOF:- 

It is not difficult to see that if F is continuous distribution 
function F, then, 

  P {XU(n)+1 < XU(n) } = 1- 
n2

1
    

 By assumption of the theorem F a , and 

  
P {Xn+1 < X1 + X2 +....+X n } = 1- 

n2

1
 

And from theorem 3.1 F is exponential. 
Tata (1969) proved that if Y1,Y2 ....are iid r.v’s with the 
distribution function F0(x) = 1-exp(-x), x>0 then, the random 
variables  
 Z1 = Y1, Z2 = Yu(2)  -Y1........Zn =Yu(n) –Yu(n) 
are independent and   P{Zn ≤ x} = F0 (x)  (n = 1,2,....).It is all 
true that for iid r.v’s if the differences XU(n) – XU(n-1),  n≥2 are  
independent,  then the population is exponential .Using this, 

we get, YU(n)  
d

  Y1 + Y2 + ......+Yn,  n=1,2,... 

where  
d

  denote equality in distribution   

Theorem 4.1.2:- 

Let X1,X2,...Xn  be a sequence of iid random variable with 
continuous distribution function F satisfying inf{ x : F(x)>0 
}=0 then the following statements are equivalent 

(a) X has an exponential distribution with density as given in 
(4.1.2)      

(b) For some  n>1, 

X1+X2+........+Xn  
d

  XU(n)  and F 1
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Proof:- 

It is clear that (a)(b). Now we will prove other implication.  

Let X1+X2+........+Xn  
d

  XU(n)  and F 1
. 

Consider 
 
 P{F0(Y1+Y2+...+Yn) }≤ P{Y1+Y2+......+Yn ≤ F0

-1(t)}  (3.1.10) 
      









)1ln(
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1

)!1(

1
t

nx dxxe
n     




t
n dx

xn 0

1]
1

1
[ln

)!1(

1

 
 
 We have P{X1+X2+.......+Xn ≤ u} = P{XU(n) ≤ u} 
 

        







))(1ln(

0

1

)!1(

1
uF

nx dxxe
n                     (3.1.11) 

 
Taking F(u) = t, u = F-1(t) in (4.1.11), we obtain  
 

P{F(X1+X2+.......+Xn)≤F-1t}= 







)1ln(

0

1

)!1(

1
t

nx dxxe
n    (3.1.12) 

From (3.1.10) and (3.1.12), we have, 

P{F(X1+X2+.......+Xn )≤ t} = P{F0(Y1+Y2+...+Yn) ≤t }, t

[0,1]        (3.1.13) 
 

Then one can show that, 

P {Xn+1 < X1 + X2 +....+X n } = P {Yn+1 <Y1 + Y2 +....+Y n } 

=  1- 
n2

1
    (3.1.14) 

Infactonehas,
  

P {Xn+1 < X1 + X2 +....+X n }  = ∫.∫.........∫ F(u1 + u2 +....+un) 
dF(u1).....dF(un)      = E[F{ X1 + X2 +....+X n}]

 

= ∫ x dp{F(X1 + X2 +....+Xn)≤x} 

P{Yn+1<Y1+Y2+....+Yn}=∫ x dp{F0(X1 + X2 +....+Xn)≤x}. 

Then by using (3.1.13) one can obtain (3.1.14). From theorem 
3.1, F is exponential, which concludes the proof. 

4. CONCLUSION 

In this study we conclude that the characterization of 
Geometric and Exponential Distribution based on Order 
statistics has a wide applications and they have a unique 
characterizations. 
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